## ORGANIC DERIVATIVES OF TIN

I. GLYCOLATES OF MONO-n-BUTYLTIN(IV)
D. P. GAUR, G. SRIVASTAVA and R. C. MEHROTRA

The Chemical Laboratories, University of Rajasthan, Jaipur-4 (India)
(Received June 9th, 1972)

## SUMMARY

The reactions of mono-n-butyltin oxide and isopropoxide with various glycols in $1 / 1$ and $2 / 3$ molar ratios have given compounds of the types bis(n-butyltin glycolate)oxide, alkylenedioxybis(n-butyltin glycolate) and n-butyltin glycolate isoproxide. The molecular complexity of these glycol derivatives in boiling benzene has been determined. Tentative assignments of the $I R$ bands of these compounds have been made.

## INTRODUCTION

Spiro tin(IV) diglycolates have been synthesised by the alcohol interchange technique ${ }^{1}$. Dibutyltin glycolates have been synthesised by the reactions of chloride ${ }^{2,3}$, oxide ${ }^{4,5}$ and ethoxide ${ }^{6.7}$ with glycols. The product obtained by the reaction of oxide with ethane-1,2-diol was assigned a ten-membered ring structure, $\mathrm{Bu}_{2} \mathrm{Sn}\left(\mathrm{OCH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{SnBu}_{2}{ }^{4}$.

## RESULTS AND DISCUSSION

No work appears to have been carried out on the glycol derivatives of monoalkyltin(IV). In the present communication we describe the preparation of some mono-n-butyltin derivatives of glycols (viz. ethane-1,2-diol, 2-mercaptoethanol, propane-1,2-diol, propane-1,3-diol, butane-1,3-diol, butane-2,3-diol, 2-methylpenta-ne-2,4-diol and 2,3-dimethylbutane-2,3-diol) by the reactions of mono-n-butyltin oxide and isopropoxide with glycols in $1 / 1$ and $2 / 3$ molar ratios in benzene, with continuous azeotropic removal of the water or isopropanol formed:

TABLE 1
GLYCOLATES OF MONO-m-BUTYLTIN

| $S$. <br> No. | Mono-1!- <br> butyltin oxide <br> (g) | Glycols added (g) | Molar <br> ratio | Product formed (state) | Yield (\%) | M.p. ( ${ }^{\circ}$ C) | Analysis <br> found <br> (calcd.) <br> (\%) $5 n$ | Mol. wt. found (calcd.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3.01 | $\begin{aligned} & \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH} \\ & (0.93) \end{aligned}$ | 1/1 | $\begin{aligned} & \text { (BuSnOCH2 } \left.\mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{O} \\ & \text { (White solid) } \end{aligned}$ | 92 | 190-93 | $\begin{gathered} 48.5 \\ (48.7) \end{gathered}$ | $\begin{aligned} & 2305 \\ & (488) \end{aligned}$ |
| 2 | 1.84 | $\begin{aligned} & \stackrel{+}{\mathrm{HOCH}}{ }_{2} \mathrm{CH}_{2} \mathrm{OH} \\ & (0.86) \end{aligned}$ | 2/3 | $\text { ( } \left.\mathrm{BuSnOCH} 2 \mathrm{CH}_{2} \mathrm{O}\right)_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$ (White solid) | 86 | 98-100 | $\begin{gathered} 45.0 \\ (44.6) \end{gathered}$ | $\begin{aligned} & 1585 \\ & (532) \end{aligned}$ |
| 3 | 3.20 | $\underset{(1,27)}{\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{SH}}$ | 1/1 | (BuSnOCH $\mathrm{CH}_{2} \mathrm{~S}_{2} \mathrm{O}^{a}$ <br> (Viscous liquid crystallises out as white solid on cooling) | 89 | 107-109 | $\begin{gathered} 46.0 \\ (45.6) \end{gathered}$ | $\begin{gathered} 916 \\ (520) \end{gathered}$ |
| 4 | 3.43 | $\begin{aligned} & \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{SH} \\ & (2.01) \end{aligned}$ | 2/3 | ( $\left.\mathrm{BuSnOCH} \mathrm{CH}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)^{b}$ <br> (Viscous liquid crystallises out as white solid on cooling) | 91 | 103-105 | $\begin{gathered} 40.7 \\ (40.9) \end{gathered}$ | $\begin{gathered} 665 \\ (580) \end{gathered}$ |
| 5 | 3.53 | $\begin{aligned} & \mathrm{HOCHMeCH} \\ & (1.34) \end{aligned}$ | 1/1 | ( $\mathrm{BuSnOCH} \mathrm{CHMCO}_{2} \mathrm{O}$ <br> (White solid) | 96 | 115-120 | $\begin{gathered} 46.4 \\ (46.0) \end{gathered}$ | $\begin{aligned} & 1046 \\ & (516) \end{aligned}$ |
| 6 | 3.56 | $\begin{aligned} & \mathrm{HOCHMeCH} \\ & (2,04) \end{aligned}$ | 2/3 | ( $\mathrm{BuSnOCH} 2 \mathrm{CHMeO}_{2}\left(\mathrm{OCH}_{2} \mathrm{CHMeO}\right.$ ) <br> (White solid) | 97 | 78-80 | $\begin{aligned} & 41.8 \\ & (41.4) \end{aligned}$ | $\begin{gathered} 751 \\ (574) \end{gathered}$ |
| 7 | 4.21 | $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ | 1/1 | ( $\left.\mathrm{BuSnOCH} 2 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{O}$ <br> (White solid) | 92 | 95-100 | $\begin{gathered} 45.8 \\ (46.0) \end{gathered}$ | $\begin{aligned} & 1035 \\ & (516) \end{aligned}$ |
| 8 | 4.18 | $\begin{aligned} & \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \\ & (2,42) \end{aligned}$ | 2/3 | ( $\left.\mathrm{BuSnOCH} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$ (Low melting white solid) | 85 |  | $\begin{gathered} 41,7 \\ (41,4) \end{gathered}$ | $\begin{array}{r} 623 \\ (574) \end{array}$ |
| 9 | 3.70 | $\begin{aligned} & \mathrm{HOCH} \mathrm{MeCH}_{2} \mathrm{CH}_{2} \mathrm{OH} \\ & (1.69) \end{aligned}$ | 1/1 | ( $\left.\mathrm{BuSnOCHMeCH} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{O}$ <br> (Viscous liquid) | 87 |  | $\begin{gathered} 43.9 \\ (43.6) \end{gathered}$ | $\begin{aligned} & 1025 \\ & (544) \end{aligned}$ |
| 10 | 3.70 | $\begin{aligned} & \mathrm{HOCHM} \mathrm{McH}_{2} \mathrm{CH}_{2} \mathrm{OH} \\ & (2.51) \end{aligned}$ | 2/3 | ( $\left.\mathrm{BuSnOCHMeCH} \mathrm{CH}_{2} \mathrm{O}\right)_{2}\left(\mathrm{OCHMeCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$ (Viscous liquid) | 92 |  | $\begin{array}{r} 38.3 \\ (38.5) \end{array}$ | $\begin{gathered} 594 \\ (616) \end{gathered}$ |
| 11 | 4.18 | HOCHMeCHMeOH $(1.88)$ | 1/1 | ( BuSnOCHMeCHMeO$)_{2} \mathrm{O}$ <br> (White solid) | 88 | 75-77 | $\begin{gathered} 43.9 \\ (43.6) \end{gathered}$ | $\begin{aligned} & 1060 \\ & (544) \end{aligned}$ |



a $\%\left(-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~S}-\right)$; found: 29.2 ; calcd. $29.3 \%{ }^{h} \%\left(-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~S}-\right)$; found: 39.2 ; calcd. $39.4 \%{ }^{\cdot} \%\left(-\mathrm{OCMe}_{2} \mathrm{CMe}_{2} \mathrm{O}-\right)$; found: 38.4 ; calicd.



 CHMe , $-\mathrm{CHMeCH}_{2} \mathrm{CMe}_{2}-$ and $-\mathrm{CMe}_{2} \mathrm{CMe}_{2}-$ )

The reactions proceed readily, and require $4-5 \mathrm{~h}$ for completion in refluxing benzene, except with the bulkier glycols (2-methylpentane-2,4-diol and 2,3-dimethyl-butane-2,3-diol); in these cases, the reactions appear to be slowed down by steric effects.

The products are white solids or viscous liquids. Compounds of type (I) are dimeric in refluxing benzene, except for those derived from ethane-1,2-diol 2-methylpentane-2,4-diol, or 2,3-dimethylbutane-2,3-diol; the product from ethane1,2 -diol has an average molecular association of 5 whereas those from the other two diols are monomeric. The $2 / 3$ molar products, which can be represented as in (IIa) or (IIb), are all monomeric, except for the ethane-1,2-diol derivative, which is trimeric.

The association behaviour of these glycolates almost parallels those of the corresponding dibutyl products ${ }^{6}$, for which the ethane-1,2-diol derivative again shows the bighest association. The dibutyltin derivatives of 2 -methylpentane-2,4-diol and 2,3-dimethylbutane-2,3-diol are, however, dimeric ${ }^{6}$. In agreement with structures suggested by earlier workers for dialkyltin glycolates ${ }^{6}$, the dimeric compounds of the type (I) can be represented as the alternative structures (IIIa) or (IIIb).


. (IIIb)
(IIIa)
The molecular complexities of the products obtained from 2-mercaptoethanol are much lower than those of products derived from ethane-1,2-diol. The tendency towards reduction of the molecular complexity on replacement of an oxygen by a sulphur atom can be explained on the basis of the lower electronegativity of sulphur
compared with that of oxygen.
The marked lowering of molecular association in 2-methylpentane-2,4-diol and 2,3 -dimethylbutane-2,3-diol derivatives appears to favour formula (IIIa) for the dimeric species.

Glycol derivatives of mono-n-butyltin have also been prepared by the reaction of mono-n-butyitin triisopropoxide with glycols in $1 / 1$ and $2 / 3$ molar ratios:


( $\mathrm{R}=-\mathrm{CH}_{2} \mathrm{CH}_{2}-$ and $-\mathrm{CHMeCH}_{2} \mathrm{CMe}_{2}-$ )
The $2 / 3$ molar products obtained from these reactions are identical with those prepared from the oxide.

Thermograms of $\mathrm{BuSnO} \mathrm{O}_{3 / 2}$ and of compounds 1,2 and 5 (see Table 1) were examined. The rate of decomposition was slow initially in each case, indicating a slow decomposition of the tin-carbon bonds, but this was followed by a rapid-decrease in weight at about $250^{\circ}$ (maxima observed for $\mathrm{BuSnO}_{3 / 2}$ and compounds 1,2 and 5 were at $250,270,290$ and $270^{\circ}$ ), and $\mathrm{SnO}_{2}$ was finally produced.

## IR spectra

The IR spectra (see Table 2) of mono-butyltin trichloride ${ }^{8}$ shows two $v(\mathrm{Sn}-\mathrm{C})$ bands at 596 and $518 \mathrm{~cm}^{-1}$ which are thought to arise from the conformational isomers. In all the mono-butyltin glycolate derivatives, two bands have been observed at $610 \pm$ $5 \mathrm{~cm}^{-1}$ and $520 \pm 20 \mathrm{~cm}^{-1}$ which may be due to $v(\mathrm{Sn}-\mathrm{C})$. Another common feature of the spectra of these compounds is the presence of a band of strong to medium intensity at $665-670 \mathrm{~cm}^{-1}$. This band is probably due to $v(\mathrm{OSnO})$. A band has been observed at $\sim 650 \mathrm{~cm}^{-1}$ in alkyltin trialkoxides also and has been assigned to $v(\mathrm{Sn}-\mathrm{O})^{9}$.

In compounds of the type (I), a band of rather low intensity occurs at $765 \pm 5$ $\mathrm{cm}^{-1}$. This may be tentatively assigned to $v(\mathrm{SnOSn})$. In bis(trialkyltin)oxides ${ }^{10}$, this band is generally found at $\sim 770 \mathrm{~cm}^{-1}$.

## EXPERIMENTAL .

Special precautions were taken to exclude moisture. Benzene (B.D.H.) was stored over sodium wire, and finally dried azeotropically with ethanol. All glycols were distilled before use. $\mathrm{BuSnO}_{3 / 2}$ (Nitto Kasei Co. Ltd., Japan) was used as supplied. $\mathrm{BuSn}(\mathrm{O}-\mathrm{i}-\mathrm{Pr})_{3}$ was prepared by the sodium method ${ }^{11}$.

Molecular weight determinations were carried out in boiling benzene in a Galienkamp semi-micro ebulliometer. IR spectra were recorded on a Perkin-EImer
( $\left.\mathrm{BuSnOCH} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{O}^{5}: 2950 \mathrm{vs}(\mathrm{br}), 2850 \mathrm{vs}(\mathrm{br}), 1450 \mathrm{vs}, 1400(\mathrm{sh}), 1360 \mathrm{~s}, 1325(\mathrm{sh}), 1290 \mathrm{vw}$, $1260-1240 \mathrm{w}(\mathrm{br}), 1180(\mathrm{sh}), 1160 \mathrm{w}, 1115$ and $1105 \mathrm{~m}(\mathrm{~d}), 1070 \mathrm{vs}, 1060(\mathrm{sh}), 1030(\mathrm{sh}), 1010 \mathrm{vw}, 900 \mathrm{vs}(\mathrm{br})$, $850(\mathrm{sh}), 800 \mathrm{vw}, 770 \mathrm{vw}, 720(\mathrm{sh}), 670 \mathrm{~s}, 615 \mathrm{~s}(\mathrm{br}), 505 \mathrm{~m}, 455 \mathrm{~m}$.
$\left(\mathrm{BuSnOCH} \mathrm{CH}_{2} \mathrm{O}\right)_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)^{\mathrm{h}}: 2950 \mathrm{vs}(\mathrm{br}), 2850 \mathrm{vs}(\mathrm{br}) .1450 \mathrm{vs}, 1400(\mathrm{sh}), 1360 \mathrm{~s} .1325(\mathrm{sh})$. $1200(\mathrm{sh}), 1145 \mathrm{w}, 1115(\mathrm{sh}), 1070 \mathrm{vs}, 1020(\mathrm{sh}), 890 \mathrm{~m}(\mathrm{br}), 715 \mathrm{vw}, 665 \mathrm{w} .610 \mathrm{~m}(\mathrm{br}), 510 \mathrm{w}(\mathrm{br}) .440 \mathrm{w}(\mathrm{br})$.
( $\left.\mathrm{Bu} \mathrm{SnOCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)_{2} \mathrm{O}^{b}: 2950(\mathrm{sh}), 2920 \mathrm{vS}, 2850 \mathrm{vs}, 1600 \mathrm{vw}(\mathrm{br}), 1440 \mathrm{~m}, 1360 \mathrm{~m}, 1278 \mathrm{~m} .1245(\mathrm{sh})$, $1210 \mathrm{w}, 1178 \mathrm{w}, 1145 \mathrm{w}, 1080 \mathrm{w}, 1050(\mathrm{sh}) .1040$ »s. $1015 \mathrm{~s} .1005 \mathrm{vs}, 950(\mathrm{sh}), 938 \mathrm{~s}, 875 \mathrm{vw}, 855 \mathrm{w}, 840 \mathrm{~m}$. $715 \mathrm{ww}(\mathrm{br}) .665$ and $655 \mathrm{w}(\mathrm{d}), 605 \mathrm{~m} .585 \mathrm{~s}, 540(\mathrm{sh}), 415 \mathrm{w}(\mathrm{br})$.
$\left(\mathrm{BuSnOCH} \mathrm{CH}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)^{\text {b }}: ~ 2965-2945 \mathrm{vs}(\mathrm{br}), 1600 \mathrm{vw}(\mathrm{br}), 1440 \mathrm{vs} .1400(\mathrm{sh}), 1355 \mathrm{~s}$. 1280 vs. $1245 \mathrm{w}, 1215 \mathrm{~m} .1180 \mathrm{~m}, 1150 \mathrm{~m}, 1080(\mathrm{sh})$. $1060(\mathrm{sh}), 1045 \mathrm{vs}, 1015(\mathrm{sh}) .1010 \mathrm{vs}, 940 \mathrm{vs}, 875(\mathrm{sh})$, $855(\mathrm{sh}), 845 \mathrm{~s}, 760 \mathrm{vw}, 735 \mathrm{vw}, 710 \mathrm{vw}, 692 \mathrm{w}, 680(\mathrm{sh}), 660 \mathrm{~m} .610(\mathrm{sh}), 600(\mathrm{sh}), 585 \mathrm{vs}, 505 \mathrm{vw}, 430 \mathrm{~m}(\mathrm{br})$.
( $\mathrm{BuSnOCH} \mathrm{CHMeO}_{2} \mathrm{O}^{\mathrm{b}}: 2950(\mathrm{sh}), 2905 \mathrm{vs}, 2850 \mathrm{vs}, 1600 \mathrm{vw}(\mathrm{br}), 1440 \mathrm{~s}, 1400(\mathrm{sh}) .1355 \mathrm{~m} .1250 \mathrm{vw}-$ (br). $1215(\mathrm{sh}), 1175(\mathrm{sh}), 1135 \mathrm{~s}(\mathrm{br}), 1120 \mathrm{~s}(\mathrm{br}), 1075(\mathrm{sh}), 1045 \mathrm{vs}(\mathrm{br}), 1010(\mathrm{sh}), 990(\mathrm{sh}), 940 \mathrm{~m}$ (br), 845 m. $765 \mathrm{~m}, 610 \mathrm{~s}(\mathrm{br}), 485 \mathrm{~m}$ (br).
$\left(\mathrm{BuSnOCH}_{2} \mathrm{CHMeO}\right)_{2}\left(\mathrm{OCH}_{2} \mathrm{CHMeO}^{\text {b }}: ~ 2950(\mathrm{sh}), 2905 \mathrm{vs}, 2850 \mathrm{vs}, 1600 \mathrm{vw}(\mathrm{br}), 1440 \mathrm{~s}, 1400(\mathrm{sh})\right.$, $1355 \mathrm{~m}, 1250 \mathrm{vw}(\mathrm{br}), 1140-1120 \mathrm{~s}(\mathrm{br}), 1095 \mathrm{~s}(\mathrm{br}), 1050 \mathrm{vs}(\mathrm{br}), 1000 \mathrm{~m}(\mathrm{br}), 930 \mathrm{~m}(\mathrm{br}), 845 \mathrm{~m}, 715 \mathrm{w}(\mathrm{br})$, $670 \mathrm{~m}, 610 \mathrm{~s}(\mathrm{br}) .520 \mathrm{w}(\mathrm{br})$.
$\left(\mathrm{BuSnOCH} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} O\right)^{b}: 2950(\mathrm{sh}), 2905 \mathrm{vs}, 2850 \mathrm{vs}, 1600 \mathrm{vw}(\mathrm{br}), 1440 \mathrm{~s}, 1400(\mathrm{sh})$, $1355 \mathrm{~m} .1250 \mathrm{vw}(\mathrm{br}), 1180 \mathrm{w}(\mathrm{br}), 1060 \mathrm{vs}(\mathrm{br}), 980 \mathrm{~m}, 935-915 \mathrm{~m}(\mathrm{br}) .865 \mathrm{vw}, 840(\mathrm{sh}), 815 \mathrm{vw}, 765(\mathrm{sh})$, $665 \mathrm{~s}(\mathrm{br}), 615 \mathrm{vs}(\mathrm{br}), 530 \mathrm{vs}(\mathrm{br})$.
( BuSnOCHMeCHMeO$)_{2} \mathrm{O}^{8}: 2960(\mathrm{sh}), 2915$ vs, 2850 vs, $1525 \mathrm{w}, 1430 \mathrm{~s} .1400(\mathrm{sh}), 1350 \mathrm{~s}, 1280 \mathrm{w}$ (br), $1160 \mathrm{~m}, 1125 \mathrm{~m}, 1090(\mathrm{sh}), 1080(\mathrm{sh}), 1070 \mathrm{vs}(\mathrm{br}), 1010 \mathrm{~s}, 990(\mathrm{sh}), 960 \mathrm{w} .920 \mathrm{~s}, 880 \mathrm{~m} .815 \mathrm{vw} .770 \mathrm{vw}(\mathrm{br})$, $700(\mathrm{sh}), 665 \mathrm{~m}(\mathrm{br}), 610 \mathrm{~s}(\mathrm{br}), 540 \mathrm{~s}, 460 \mathrm{w}(\mathrm{br})$.
( $\left.\mathrm{BuSnOCMe} \mathrm{e}_{2} \mathrm{CMe}_{2} \mathrm{O}\right)_{2} \mathrm{O}^{\text {b }}: 2950 \mathrm{vs} .2925 \mathrm{vs}, 2855 \mathrm{vs}, 1600 \mathrm{vw}(\mathrm{br}), 1450 \mathrm{~m}, 1360 \mathrm{~m}, 1325(\mathrm{sh}), 1245 \mathrm{vw}$, $1180(\mathrm{sh}), 1155 \mathrm{vs}, 1105(\mathrm{sh}) 1020-1000 \mathrm{w}(\mathrm{br}), 945 \mathrm{~s}, 880 \mathrm{~m}, 820 \mathrm{w} .765(\mathrm{sh}), 665 \mathrm{~s}, 615 \mathrm{vs}(\mathrm{br}), 540 \mathrm{vs}(\mathrm{br})$, 490(sh).
$\left.\left(\mathrm{BuSnOCMe}_{2} \mathrm{CMe}_{2} \mathrm{O}\right)_{2} \mathrm{OCMe}_{2} \mathrm{CMe}_{2} \mathrm{O}\right)^{\mathrm{b}}: 2960-2925 \mathrm{vs}(\mathrm{br}), 2860 \mathrm{vs}, 1600 \mathrm{vw}(\mathrm{br}), 1450 \mathrm{~s}, 1415 \mathrm{~s}$, $1250 \mathrm{vw}, 1180(\mathrm{sh}), 1160-1145 \mathrm{vs}(\mathrm{br}), 1110(\mathrm{sh}), 1085(\mathrm{sh}), 1020-1005 \mathrm{w}$ (br), $950 \mathrm{vs}, 920(\mathrm{sh}), 880 \mathrm{~s}, 825 \mathrm{w}$, $685(\mathrm{sh}), 670 \mathrm{~s}(\mathrm{br}), 615 \mathrm{vs}(\mathrm{br}), 540 \mathrm{~s}(\mathrm{br})$.
( $\left.\mathrm{BuSnOCHMeCH} \mathrm{CMe}_{2} \mathrm{O}\right)_{2} \mathrm{O}^{\text {c }}: 2960$ vs, 2930 vs. $2860 \mathrm{vs}, 1600 \mathrm{vw}(\mathrm{br}), 1450$ and $1400 \mathrm{~m}(\mathrm{~d}), 1360 \mathrm{~s}$. $1310 \mathrm{w}, 1290 \mathrm{vw}, 1255 \mathrm{w}, 1230(\mathrm{sh}), 1155 \mathrm{vs}, 1115 \mathrm{~m}, 1075 \mathrm{~m}(\mathrm{br}), 1040 \mathrm{~m}(\mathrm{br}), 1005(\mathrm{sh}), 965 \mathrm{w}, 940 \mathrm{vw}$. $900 \mathrm{~s}, 875 \mathrm{~m}, 830 \mathrm{w}, 760 \mathrm{w}, 665 \mathrm{~s}(\mathrm{br}), 615 \mathrm{vs}(\mathrm{br}), 540 \mathrm{vs}(\mathrm{br})$.
( $\left.\mathrm{BuSnOCHMeCH} \mathrm{CMe}_{2} \mathrm{O}\right)_{2}\left(\mathrm{OCHMeCH}_{2} \mathrm{CMe}_{2} \mathrm{O}\right)^{\text {c }}: 2960 \mathrm{vs}, 1935 \mathrm{vs}, 2870 \mathrm{vs}, 1600 \mathrm{vw}(\mathrm{br}), 1450$ and $1405 \mathrm{~s}(\mathrm{~d}), 1360 \mathrm{vs}, 1310 \mathrm{~m}, \$ 290 \mathrm{vw}, 1255 \mathrm{~m}, 1225(\mathrm{sh}), i 155 \mathrm{vs}, 1115 \mathrm{~m}, 1075 \mathrm{~m}, 1040 \mathrm{~m}, 1015(\mathrm{sh}), 965 \mathrm{w}$, $940 \mathrm{vw}, 900 \mathrm{~s}, 875 \mathrm{~m} .835 \mathrm{~m} .760 \mathrm{w}, 670 \mathrm{~s}(\mathrm{br}), 615 \mathrm{vs}(\mathrm{br}), 535 \mathrm{~s}(\mathrm{br})$.
$\mathrm{BuSn}(\mathrm{O}-\mathrm{i}-\mathrm{Pr})\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)^{\text {c }}: 2950-2850 \mathrm{vs}(\mathrm{br}), 2660 \mathrm{w}, 1560 \mathrm{vw}, 1445 \mathrm{~s}, 1400 \mathrm{~m}, 1355 \mathrm{~s}, 1330 \mathrm{~s}$. $1200 \mathrm{w}, 1250(\mathrm{sh}), 1240 \mathrm{w}, 1160 \mathrm{~s}, 1120 \mathrm{vs}, 1080-1060 \mathrm{vs}(\mathrm{br}), 975$ and $950 \mathrm{~s}(\mathrm{~d}), 89 \mathrm{vs}(\mathrm{br}), 830 \mathrm{~m}, 755 \mathrm{vw}$, $670 \mathrm{vs}, 620-595 \mathrm{vs}(\mathrm{br}), 530 \mathrm{~m}(\mathrm{br})$.
$\mathrm{BuSn}(\mathrm{O}-\mathrm{i}-\mathrm{Pr})\left(\mathrm{OCHMeCH}_{2} \mathrm{CMe}_{2} \mathrm{O}\right)$ c: 2955 vs, 2920 vs. $2850 \mathrm{~s} .1450 \mathrm{~s}, 1410 \mathrm{~m}, 1355$ vs, 1325 s . $1260 \mathrm{~m} .1220 \mathrm{~m}, 1180 \mathrm{~s} .1155 \mathrm{vs}, 1120 \mathrm{vs} .1075 \mathrm{~s}, 1035 \mathrm{~s}, 970-955 \mathrm{~s}(\mathrm{br}), 925 \mathrm{vs}, 875-860 \mathrm{w}(\mathrm{br}), 840-825 \mathrm{~m}(\mathrm{br})$, $780 \mathrm{w}, 665 \mathrm{w}(\mathrm{br}), 615(\mathrm{sh}), 590-570 \mathrm{vs}(\mathrm{br}) .500 \mathrm{w}(\mathrm{br})$.

[^0]337 Grating Spectrophotometer. Thermogravimetric analyses were carried out on Stanton (Mass-flow type) Automatic Recording Thermogravimetric Balance.

Tin was estimated as $\mathrm{SnO}_{2}$. Pinacol ${ }^{12}$, isopropanol (in azeotrope) ${ }^{13}$ and thio groups ${ }^{14}$ were estimated by oxidimetric methods.
Reaction of $\mathrm{BuSnO}_{3 / 2}$ with ethane-1,2-diol in 1/1 molar ratio
To a benzene solution of $\mathrm{BuSnO}_{3} / 2$ ( $3.01 \mathrm{~g} ; 15.1 \mathrm{mmoles}$ ) was added ethane-1,2diol ( $0.93 \mathrm{~g} ; 15 \mathrm{mmoles}$ ). The mixture was shaken well for about 5 min and then refluxed (bath temp. 115-120 ) for about 4 h , while the water formed was continuously removed azeotropically with benzene. The excess of solvent was distilled out. On drying the product under reduced pressure, a white crystalline solid ( 3.4 g ; m.p. 190-193 ${ }^{\circ}$ ) was obtained. (Found: $\mathrm{Sn}, 48.9$. Mol. wt., 2305. $\mathrm{Sn}_{2} \mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{5}$ calcd.: Sn, $48.7 \%$. Mol. wt., 488.)
Reaction of $\mathrm{BuSnO}_{3 / 2}$ with ethane-1,2-diol in $2 / 3$ molar ratio
By the above procedure, a mixture of $\mathrm{BuSnO}_{3 / 2}(1.84 \mathrm{~g} ; 9.21$ mmoles) and ethane-1,2-diol ( $0.86 \mathrm{~g} ; 13.9$ mmoles) gave a white crystalline solid ( $2.62 \mathrm{~g} ; \mathrm{m} . \mathrm{p} .98-100^{\circ}$ ). (Found: $\mathrm{Sn}, 45.0$. Mol. wt., 1585. $\mathrm{Sn}_{2} \mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{6}$ calcd.: $\mathrm{Sn}, 44.6 \%$. Mol. wt., 532 .)

Similar compounds prepared with various glycols are summarised in Table 1.
Reaction between $\mathrm{BuSn}(\mathrm{O}-i-\mathrm{Pr})_{3}$ and ethane-1,2-diol in $1 / 1$ molar ratio
$\mathrm{BuSn}(\mathrm{O}-\mathrm{i}-\mathrm{Pr})_{3}(1.70 \mathrm{~g} ; 4.82$ mmoles) and ethane-1,2-diol ( $0.30 \mathrm{~g} ; 4.84 \mathrm{mmoles}$ ) were mixed in 70 ml benzene. The reaction was exothermic. This mixture was refluxed and the binary azeotrope (benzene/isopropanol) was collected. Removal of the excess of solvent under vacuum gave a yellow coloured viscous liquid ( 1.40 g ). (Isopropanol in azeotrope; found: 0.56 g . Calcd.: 0.57 g .) (Found: $\mathrm{Sn}, 40.5 \mathrm{SnC}_{9} \mathrm{H}_{20} \mathrm{O}_{3}$. calcd.: $\mathrm{Sn}, 40.2 \%$.

Reaction between $\mathrm{BuSn}(\mathrm{O}-\mathrm{i}-\mathrm{Pr})_{3}$ and ethane-1,2-diol in $2 / 3$ molar ratio
By the above procedure a mixture of $\mathrm{BuSn}(\mathrm{O}-\mathrm{i}-\mathrm{Pr})_{3}(2.34 \mathrm{~g} ; 6.63$ mmoles $)$ and ethane-1,2-diol ( $0.62 \mathrm{~g} ; 10 \mathrm{mmoles}$ ) yielded a white crystalline solid ( 1.61 g ; m.p. $98-100^{\circ}$ ). Isopropanol in azeotrope; found: 1.12 g . Calcd.: 1.20 g .) (Found: $\mathrm{Sn}, 44.9$. Mol. wt., 2231. $\mathrm{Sn}_{2} \mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{6}$ calcd. $\mathrm{Sn}, 44.6 \%$ Mol. wt., 532.)

Reaction between $\mathrm{BuSn}(\mathrm{O-i-Pr})_{3}$ and 2-methylpentane-2,4-diol in $1 / 1$ molar ratio
$\mathrm{BuSn}(\mathrm{O}-\mathrm{i}-\mathrm{Pr})_{3}(2.27 \mathrm{~g} ; 6.43 \mathrm{mmoles})$ and 2-methylpentane-2,4-diol ( $0.76 \mathrm{~g} ;$ 6.44 mmoles) gave a yellow coloured viscous liquid ( 2.24 g ). (Isopropanol in azeotrope; found: 0.76 g. Calcd.: 0.77 g .) (Found: $\mathrm{Sn}, 33.5 . \mathrm{SnC}_{13} \mathrm{H}_{28} \mathrm{O}_{3}$ calcd: $\mathrm{Sn}, 33.8 \%$.)

Reaction between $\mathrm{BuSn}(\mathrm{O}-\mathrm{i}-\mathrm{Pr})_{3}$ and 2-methylpentane-2,4-diol in $2 / 3$ molar ratio A mixture of $\mathrm{BuSn}(\mathrm{O}-\mathrm{i}-\mathrm{Pr})_{3}(1.67 \mathrm{~g} ; 4.73 \mathrm{mmoles})$ and 2 -methylpentane-2,4diol ( $0.84 \mathrm{~g} ; 7.12$ mmoles) gave a yellow coloured viscous liquid ( 1.65 g ). (Isopropanol in azeotrope; found: 0.83 . Calcd.: 0.85 g .) (Found: $\mathrm{Sn}, 33.5$. Mol. wt., 571. $\mathrm{Sn}_{2} \mathrm{C}_{26}{ }^{-}$ $\mathrm{H}_{54} \mathrm{O}_{6}$ calcd.: $\mathrm{Sn}, 33.9 \%$. Mol. wt., 600.)

## ACKNOWLEDGEMENT

The authors thank the U.G.C., New Delhi, for awarding a Junior Research Fellowship to one of us (D.P.G.).

## REFERENCES

1 R. C. Mehrotra and V. D. Gupta, J, Indian Chem. Soc., 43 (1966) 727.
2 H. J. Emeleus and J. J. Zuckerman, J. Organometal. Chem., 1 (1964) 328.
3 H. E. Ramsden and C. K. Banks, U.S. Pat., 2, 789, 994 (1957); Chem. Abstr., 51 (1957) 14786.
4 J. Bornstein, B. R. La Liberte, T. M. Andrews and J. C. Montermoso, J. Org. Chem., 24, (1959) 886.
5 W. J. Considine, J. Organometal. Chem., 5 (1966) 263.
6 R. C. Mehrotra and V. D. Gupta, J. Organometal. Chem., 4 (1965) 145.
7 J. Pommier and J. Valade, Bull. Soc. Chim. Fr., (1965) 1257.
8 R. A. Cummins, Aust. J. Chem, 16 (1963) 985.
9 I. Lorberth and M. R. Kula, Chem Ber., 97 (1964) 3444.
10 T. Tanaka, Organometal Chem. Rev. A, 5 (1970) 1.
11 D. P. Gaur, G. Srivastava and R. C. Mehrotra, under Communication.
12 R. C. Mehrotra and G. Srivastava, J. Chem. Soc., (1962) 1032.
13 D. C. Bradley, F. M. A. Halim and W. Wardlaw, J. Chem. Soc., (1950) 3450.
14 I. M. Kolthoff and R. Belcher, Volumetric Analysis, Vol. 3, Interscience, New York, 1957, p. 389.


[^0]:    ${ }^{a}$ IR data are given in $\mathrm{cm}^{-1}$ followed by an indication of intensity. The following abbreviations are used: s strong, vs very strong, m medium, w weak, vw very weak, (br) broad, d doublet, (sh) shoulder, ${ }^{b}$ IR of solid compounds as nujol mull. ' IR of neat liquid.

